近日,www.优德88.cpm 能源学院、能源与材料创新研究院高立军教授课题组与南洋理工大学Jong-Min Lee教授课题组合作,报道了一种钴掺杂的层状镍铁双金属氢氧化物(NiFeCo-LDH)纳米片/碳纤维(CF)的复合催化剂,具有理想的电催化析氧(OER)性能。扩展X射线精细结构分析表明,Co取代可以稳定Fe的局部环境并促进NiFeCo-LDH/CF中的π对称键合轨道,达到优化NiFe-LDH电子结构的效果。进一步结合复合材料分级结构中大量暴露的表面活性位点优势以及CF辅助提升材料的电荷转移速率,所得NiFeCo-LDH/CF材料表现出优异的OER性能。在电流密度为10 mA cm-2时,该催化剂的析氧过电位低至249 mV,并且循环稳定性极佳。相关研究成果以“Co-Induced Electronic Optimization of Hierarchical NiFe LDH for Oxygen Evolution”为题,发表在国际知名期刊Small上,www.优德88.cpm 博士生林艳平和南洋理工大学博士后王昊博士为共同第一作者。www.优德88.cpm 高立军教授和赵建庆副教授,南洋理工大学Jong-Min Lee教授为共同通讯作者。
文章链接:https://onlinelibrary.wiley.com/doi/full/10.1002/smll.202002426
氧气析出反应在可再生能源技术如电解水、燃料电池等领域发挥着至关重要的作用。但是,OER为复杂的四电子转移反应,其反应动力学缓慢,严重制约着催化性能和实际应用。因此,亟需高效且稳定的OER催化剂来降低过高的反应过电位,并且加速反应动力学。虽然传统的IrO2和RuO2基催化剂反应活性高,但是资源匮乏的贵金属和高昂的价格严重限制了它们的大规模应用。绿色廉价的层状镍铁双金属氢氧化物(NiFe-LDH)被认为是理想的非贵金属基催化剂,在其电催化析氧反应过程中,Fe3+离子能有效调节Ni(OH)2中Ni2+和NiOOH中Ni3+等离子的化合价态,因此表现出较好的OER性能。然而,NiFe-LDH材料存在着活性位点受限、本体导电性能差、结构不稳定等缺点,需要进一步对其进行改性,以提升其OER反应活性。
沸石咪唑酯骨架结构材料(ZIF-67)是典型的金属-有机骨架材料,其中Co2+与二甲基咪唑配体自组装形成具有周期性的网络结构和三维框架,在酸性条件下易溶解。由于Co2+的化合价易变,可为NiFe-LDH材料提供三价离子,用于调节内部电子结构,有助于提升该材料的电催化活性。此外,通过与高电导率的网络状碳材料复合,如碳纳米管和碳纤维等,可以显著改善金属氧化物/氢氧化物材料的本体电导率。鉴于此,本研究工作通过牺牲生长在碳纤维上的ZIF-67作为钴源和表面活性剂,在CF上一步原位共沉淀多金属阳离子来制备具有分级结构的NiFeCo-LDH/CF复合材料,实现该材料电催化OER活性和稳定性的协同提升。
图1. NiFeCo-LDH/CF复合电催化剂的合成过程示意图。
NiFeCo-LDH/CF复合电催化剂的合成如图1所示。以ZIF-67、Ni2+、Fe3+和CF作为前驱体,利用一步溶剂热反应,成功在CF上实现镍铁钴三种金属离子的共沉淀,获得具有管状卷曲纳米片结构的NiFeCo-LDH/CF复合材料。
图2. NiFeCo-LDH/CF材料的(a)SEM图、(b-d)TEM和HRTEM图以及(d,f)HAADF-STEM图和对应的元素mapping图。
SEM和TEM图表明NiFeCo-LDH/CF由大量卷曲纳米薄片堆叠于CF上构成,其中纳米片厚度约为3.5-4.9 nm(图2a-b)。HRTEM、HAADF-STEM以及元素mapping图清晰地揭示了NiFeCo-LDH/CF的分级立体结构,并且证实Ni、Fe、Co三种元素在该材料中的均匀分布(图2c-f)。
图3. NiFeCo-LDH/CF材料与对比样品的(a)XRD谱图、(b)FT-IR图和(c, d)N2吸附/脱附等温线及对应的孔径分布图。
如图3a的XRD谱图所示,NiFeCo-LDH/CF材料的衍射峰位与NiFe-LDH相对应,表明NiFeCo-LDH/CF结晶性良好,并且Co的掺入未引起晶体结构的明显变化。FT-IR图谱显示NiFeCo-LDH/CF中没有二甲基咪唑的咪唑环弯曲振动,说明材料合成过程中二甲基咪唑仅起到表面活性剂的作用(图3b)。BET测试结果表明(图3c-3d),NiFeCo-LDH/CF材料为微孔型材料,相比于NiFe-LDH有更大的比表面积。
图4. NiFeCo-LDH/CF材料与对比样的(a-c)HR-XPS图和(d-f)Ni、Fe、Co的K边XANES光谱。
利用XPS技术分析了NiFeCo-LDH/CF材料的表面电子结构,了解Fe、Co和Ni在催化剂表面的电子相互作用和电荷转移。如图4a-c所示,Ni2p、Fe2p以及Co2p高分辨XPS图谱说明NiFeCo-LDH/CF中的Ni和Fe分别以+2、+3价形式存在,而Co以+2、+3两种价态共存。此外,与NiFe-LDH相比,NiFeCo-LDH/CF的Ni2p和Fe2p的特征峰位往结合能更高的方向偏移,说明Co和NiF-LDH之间发生了较强的电子交互作用。进一步通过XANES表征技术确认了NiFeCo-LDH/CF中各金属元素的化合价态,其结果与XPS分析一致。
图5. NiFeCo-LDH/CF材料与对比样NiFe-LDH的(a-c)Ni、Fe、Co K边EXAFS振荡光谱和(d-f)Ni、Fe、Co K边傅里叶变换FT-EXAFS光谱。
利用EXAFS与FT-EXAFS分析样品的局部电子结构以及配位环境。如图5a-b显示,NiFeCo-LDH/CF和NiFe-LDH样品中的Ni和Fe振荡幅度及频率相似,表明其配位环境与CF和Co的引入无关。另外,在NiFeCo-LDH/CF中,Co的振荡幅度频率与Ni相似,说明Co部分取代原始Ni的原子(图5c)。图5d显示Ni-O和Ni-Ni的成键距离没有变化,而第二层壳(Ni-Ni/Ni-Co)的强度则因Co的取代效应而增大,与图5e中NiFeCo-LDH/CF样品中Fe物质的原子结构的明显稳定相对应。图5f再次证明Ni(OH)2基体中Co的取代掺杂。结果表明,铁配位环境的稳定因其具有能更好与氧-相关吸附物杂化的eg d-轨道,可以促进Ni3d-O2p和Co3d-O2p的共价性,从而修饰了NiFeCo-LDH/CF的电子结构,有助于提升其电催化OER性能。
图6.(a)NiFeCo-LDH/CF材料与对比样的在1M KOH电解液中的OER极化曲线;(b)放大的极化曲线显示了不同样品的氧化峰;(c)对应的Tafel斜率;(d)电流密度为10 mA cm-2时的过电位,以及Tafel斜率对比图;(e)电化学交流阻抗谱;(f)对应过电位为249 mV时的计时电流图,插图为1000 CV循环后的LSV曲线。
电催化性能测试结果如图6所示。NiFeCo-LDH/CF展现出超低的析氧过电位,仅为249 mV(电流密度为10 mA cm-2)以及42 mV dec-1的Tafel斜率,远优于NiFe-LDH和商业RuO2催化剂(图6a-d)。电化学交流阻抗测试表明,NiFeCo-LDH/CF具有更快速的电荷转移以及更低的电阻特性(图6e),与Tafel结果一致。同时,电化学计时电流和循环测试显示NiFeCo-LDH/CF具有极好的电化学稳定性。
总结:本研究工作开发了一种可在CF上成功制备具有卷曲且边缘丰富的NiFeCo-LDH纳米片三维复合材料的策略。EXAFS结果表明,用Co代替部分原始Ni原子可以稳定Fe局部配位环境并促进NiFeCo-LDH催化剂中的π-对称键合轨道,较强的Ni3d-O2p和Co3d-O2p的共价键显著改变了NiFeCo-LDH的电子结构。此外,卷曲的NiFeCo-LDH超薄纳米片可以有效减小厚度和增加比表面积,更多暴露其活性部位。与CF结合的导电管状卷曲结构可以确保在电催化OER过程中向NiFeCo-LDH/CF提供足够的电子。所得的NiFeCo-LDH/CF在碱性电解液中展现出比基准NiFe-LDH以及商用RuO2等催化剂更优异的OER性能,可为设计和制造用于各种储能和转化的更活泼、更稳定的电催化剂开辟新的路径。