《现代生物方法学与纳米医学》教学大纲

课程代码: NAYJ2001

课程名称: 现代生物方法学与纳米医学

英文名称: Advanced Biological Methodology and Nanomedicine

课程性质: 专业选修课程 学分/学时: 3 学分/54 学时

考核方式: 预习+文献汇报+期末考试

开课学期: 第 5 学期 适用专业: 纳米医学

先修课程: 普通生物学、生物化学、无机化学、有机化学

后续课程: 毕业设计

开课单位: 纳米科学技术学院

课程负责人: 彭睿,刘庄 大纲执笔人: 彭睿,刘庄

大纲审核人: 殷黎晨

选用教材: 《现代分子生物学》(主编:朱玉贤,高等教育出版社,2007年),《细胞生物学》

(主编: 翟中和,高等教育出版社,2007 年),《Bioconjugate Techniques》(主

编: Greg T. Hermanson, Academic Press,2008 年)

一、课程目标

通过本课程的理论教学,使学生具备下列能力:

- 1. 能够运用生物学、医学、化学等专业知识表述纳米传感器、纳米探针、肿瘤诊断与治疗等纳米医学领域的复杂问题。
- 2. 能够利用生物学研究、化学研究的不同思维方法和研究视角,对纳米医学领域的复杂问题的分析结果进行有效性和合理性评估。
- 3. 能够基于科学原理并采用生物学、化学方法对纳米医学领域的复杂问题进行初步研究,包括设计实验、分析与解释数据,并得到合理有效的结论。

二、教学内容

第一章:分子遗传学中的生物大分子

介绍核酸、蛋白质等生物分子的结构组成,及其作为基本结构单元在纳米结构构筑方面的应用。

第二章: 生物学研究中的标记及检测方法

- 1. 介绍常见的报告基因系统及其在活细胞标记方面的应用。
- 2. 介绍超分辨荧光显微成像、诱导聚集发光成像、近红外二区荧光成像、生物组织光透明等技术的原理及在高特异性、高灵敏生物分子成像中的应用。

第三章: DNA 纳米技术

- 1. 介绍自然界中存在的 DNA 结构和基于 DNA 杂交技术的人工 DNA 折纸纳米结构,及其在生物传感中的应用。
- 2. 介绍 DNA 水凝胶以及 DNA 与纳米颗粒自组装等技术。

第四章: 纳米医学概论与生物传感

- 1. 介绍纳米医学的研究内容、研究目的和研究方法。
- 2. 介绍常见纳米生物传感器的种类、检测原理及应用。

第五章: 纳米探针与分子影像

- 1. 介绍光学成像、磁共振成像、超声成像、核素成像等分子影像的基本原理,并比较不同分子影像手段在临床应用中的优缺点
- 2. 介绍不同分子探针的设计原理与构筑方法。

第六章:表面化学、纯化以及生物偶联与纳米医学

介绍纳米医学中常用的表面化学、纯化以及生物偶联的基本原理与重要性。

第七章: 纳米药物载体与药物输送及可控释放

- 1. 介绍常见纳米药物载体的分类及优缺点。
- 2. 介绍刺激响应性纳米药物载体的设计原理与药物可控释放的优势。

第八章: 纳米颗粒的体内行为及肿瘤靶向策略

- 1. 介绍纳米颗粒的体内分布与药代动力学行为的特点。
- 2. 介绍纳米颗粒与肿瘤靶向递送的原理。

第九章: 纳米材料与肿瘤治疗新策略

介绍纳米材料在肿瘤基因治疗、放射治疗、免疫治疗等中应用。

三、考核方式

课程目标	考核内容	考核方式
1. 能够运用生物学、医学、化学等专业知识表	文献调研与PPT展示能	视频学习,课
述纳米传感器、纳米探针、肿瘤诊断与治疗等纳	力。	堂提问和讨
米医学领域的复杂问题。(支撑毕业要求指标点		论,文献汇报,
1-1)		考试。
2. 能够利用生物学研究、化学研究的不同思维	文献调研与PPT展示能	视频学习,课
方法和研究视角,对纳米医学领域的复杂问题的	力。	堂提问和讨
分析结果进行有效性和合理性评估。(支撑毕业		论,文献汇报,
要求指标点 2-3)		考试。
3. 能够基于科学原理并采用生物学、化学方法	文献调研与PPT展示能	视频学习,课
对纳米医学领域的复杂问题进行初步研究,包括	力,实验设计能力。	堂提问和讨
设计实验、分析与解释数据,并得到合理有效的		论,文献汇报,
结论。(支撑毕业要求指标点 4-1)		考试。

成绩评定方法:

成绩=10%预习+30%文献汇报+60%考试

	预习权重	文献汇报权重	考试权重
课程目标1	0.8	0.1	0.1
课程目标 2	0.2	0.5	0.3
课程目标 3	<u>——</u>	0.4	0.6

课程目标(即毕业要求指标点)达成度评价方法:

目标达成度 = (预习平均分*预习权重*0.1+文献汇报平均分*文献汇报权重*0.3+考试平均分*考试权重*0.6)/(100*预习权重*0.1+100*实操权重*0.3+100*报告权重*0.6)

评分标准:

课程目标	90-100 (优秀)	75-89 (中 7 7)	60-74	0-59
1. 能够运用生物 学、医学、化学等 专业知识表述纳米 传感器、纳米探针、 肿瘤诊断与治疗等 纳米医学领域的复 杂问题。	能够准确地运用 所学知识表述纳 米领域的 握各类 纳米传感器、纳 米探针、肿瘤诊 断与治疗的设计 原理与构筑方法	(良好) 能够合理地运用 所学知识表述,掌 握各类纳米传感 器、纳米探针、肿瘤诊断与治病 设计原理与构筑 方法,表述基本正确。	(及格) 能够识别,是 一个, 一个, 一个, 一个, 一个, 一个, 一个, 一个, 一个, 一个,	(不及格) 表述纳米领域 的问题出现概 念性错误,部分 了解各类纳米 传感器、纳米探 针、肿瘤诊断与 治疗的设计原 理与构筑方法。
2. 能够通过生物学研究、化学研究的不同思维方法和研究视角,对纳米医学领域的复杂问题的分析结果进行有效性和合理性评估。	能够灵活运用生物学、化学研究思维,对纳米医学领域问题的可行性和合理性进行准确的评估,并得出有效结论	能够运用生物学、 化学研究思维,对 纳米医学领域问 题的可行性和合 理性进行评估,并 得出结论	能够运用生物 学、化学研究思 维,对纳米医学 领域问题。理性 进行评估,并得 出结论,但不够 准确	未很好地掌握 生物学、化学研 究思维,对纳米 医学领域问题 的可行性和合 理性进行评估, 但存在着概念 性错误,不能得 出有效结论。
3. 能够基于科学原理并采用生物学、化学方法对纳米医学领域的复杂问题进行初步研究,包括设计实验、分析与解释数据,并得到合理有效的结论。	能够灵活运用所 学知识,提出较 为合理的实验方 案,准确地分析 并解释实验数 据,得出合理有 效的结论	能够运用所学知识,提出实验方案,分析并解释实验数据,得出合理 结论	能够运用所学 知识,提出实验 方案,分析并解 释实验数据,并 得出结论,但实 验方案不够严 善,结论不够严 谨	能够运用所学 知识,提出实验 方案,分析并解 释实验数据,并 得出结论,但实 验方案 明显 存在着明显的 错误