Prof. Rui Peng and Prof. Zhuang Liu’s research paper ‘Functionalized graphene oxide serves as a novel vaccine nano-adjuvant for robust stimulation of cellular immunity’ published in Nanoscale was selected as ‘2016 Hot Articles in Nanoscale’.
Abstract of the paper:
Benefiting from their unique physicochemical properties, graphene derivatives have attracted great attention in biomedicine. In this study, we carefully engineered graphene oxide (GO) as a vaccine adjuvant for immunotherapy using urease B (Ure B) as the model antigen. Ure B is a specific antigen forHelicobacter pylori, which is a class I carcinogen for gastric cancer. Polyethylene glycol (PEG) and various types of polyethylenimine (PEI) were used as coating polymers. Compared with single-polymer modified GOs (GO–PEG and GO–PEI), certain dual-polymer modified GOs (GO–PEG–PEI) can act as a positive modulator to promote the maturation of dendritic cells (DCs) and enhance their cytokine secretion through the activation of multiple toll-like receptor (TLR) pathways while showing low toxicity. Moreover, this GO–PEG–PEI can serve as an antigen carrier to effectively shuttle antigens into DCs. These two advantages enable GO–PEG–PEI to serve as a novel vaccine adjuvant. In the subsequentin vivoexperiments, compared with free Ure B and clinically used aluminum-adjuvant-based vaccine (Alum-Ure B), GO–PEG–PEI–Ure B induces stronger cellular immunityviaintradermal administration, suggesting promising applications in cancer immunotherapy. Our work not only presents a novel, highly effective GO-based vaccinenano-adjuvant, but also highlights the critical roles of surface chemistry for the rational design of nano-adjuvants.
Link to the paper:http://pubs.rsc.org/en/content/articlelanding/2016/nr/c5nr09208f#!divAbstract
Editor: Danting Xiang