High-performance pulse light stable perovskite indoor photovoltaics
Chen Li, Haoxuan Sun*, Min Wang, Shan Gan, Da Dou, Liang Li*
Science Bulletin 2024, 69, 334–344
https://doi.org/10.1016/j.scib.2023.12.022
Perovskite solar cells offer great potential as a sustainable power source for distributed electronic devices that operate indoors. However, the impact of advanced lighting technology, especially the widely used pulse width modulation (PWM) technology, on perovskite photovoltaics has been ignored. Herein, for the first time in photovoltaics, we find that the light impact emitted by the PWM lighting system caused dynamic strain in perovskite thin films, induced phase separation, and accelerated the generation of metallic lead (Pb0) defects, leading to irreversible degradation of the cell performance after 27 h (T80). To address this issue, formamidinium triiodide (FAI3) is chosen to treat the surface of the perovskite and release residual stress, resulting in reduced lattice deformation during dynamic strain processes. Meanwhile, it suppresses harmful Pb0defects and reducesVocloss at low light intensity. The champion device achieves impressive power conversion efficiency (PCE) of 35.14% and retains 99.5% of the initial PCE after continuous strobe light soaking for 2160 h.