A branching probabilistic interpretation for the solutions of fully nonlinear partial differential equation

发布时间: 2024-06-12 浏览次数: 10
人:Nicolas Privault,南洋理工大学物理与数学科学学院教授
报告时间:2024619日上午10:00-11:00
报告地点:览秀楼105学术报告厅
报告摘要:

We present a stochastic branching algorithm for the numerical solution of fully nonlinear

PDEs via the use of random trees that propagate information on nonlinearities along theirbranches. This approach allows us to handle smooth functional nonlinearities involving gradient terms of any orders. Our numerical implementation combines a deep learningalgorithm with Monte Carlo estimation, and numerical examples are presented with comparisons to other approaches.

报告人简介:

Nicolas Privault,是新加坡南洋理工大学物理与数学科学学院教授,他博士毕业于法国

巴黎第六大学,他的研究兴趣包括随机分析及其应用、金融数学等。


地址:www.优德88.cpm 十梓街1号
版权所有 Copyright © 2012 www.优德88.cpm 金融工程研究中心. 访问次数: